>

【澳门金沙国际网站】“先有鸡”而且“先有蛋

- 编辑:澳门金沙国际网站 -

【澳门金沙国际网站】“先有鸡”而且“先有蛋

“先有鸡”而且“先有蛋” 量子力学让两个事件相互触发成为可能

狡猾量子颠覆因果 量子实验甚至修改“时间”概念

澳门金沙国际网站 1

澳门金沙国际网站 2

图片来源:KEITHBISHOP/ISTOCKPHOTO

爱因斯坦散步时,要穿过两扇门。他先穿过一道绿门,然后穿过一道红门;或者他能先穿过红门再穿过绿门吗?两种选择,非此即彼。不过,他通过这两扇门时一定有先后次序,对吧?

在日常世界中,事情以特定的顺序发生——你的闹钟会在你起床前响起,反之亦然。不过,一项最新试验表明,当研究的对象变成光子时,讲清楚两个事件以何种顺序发生是不可能的。这抹灭了人们关于时间前后的常识概念,并且可能令因果关系的概念发生混乱。这个被称为量子开关的装置或许能为不断萌生的量子信息技术提供一种有用的新工具。

但如果爱因斯坦是乘着维也纳大学Philip Walther实验室的光子飞行的话,或许情况就没那么简单了。

量子力学已经颠覆了人们关于每个物体同一时间只能位于一个地方的认知。在量子力学怪诞性的作用下,像电子一样的微小粒子能同时位于多个地方。量子开关实现了类似的事情:它可以证明事件A能在事件B之前发生,同时事件B能在事件A之前发生。

Walther研究组已证明,当光子在实验室内高速飞行时,是无法判断它们是以哪种次序通过两道门的。这并非因为丢失或破坏了次序信息,而是因为这个信息根本不存在。在Walther的实验中,事件发生并没有明确的先后顺序。

“看到人们利用真实试验实现了我们的想法,我非常激动。”2009年首次提出这个概念的理论学家之一、英国牛津大学的Giulio Chiribella表示。

2015年的这一发现让科学家意识到,量子世界比他们之前认为的更匪夷所思。Walther的实验打破了“一件事导致了另一件事”的因果逻辑。这就像之前物理学家搅乱时间这个概念,让人感觉它能同时向两个方向流逝。

为展示这一效应,澳大利亚昆士兰大学物理学家Andrew White和同事向一个被称为干涉仪的装置发射光子。在该装置中,两个通道分开然后重新合并。光子既是一种粒子,也是可被极化从而在水平或垂直方向上蜿蜒前行的电磁波。研究人员对这个平台进行了设置:如果光子在垂直方向被极化,它将首先通过平台的左侧路径,然后“冲回来”并且通过一个不同的“端口”,即右侧路径,进入装置。如果光子在水平方向被极化,它将先采用右侧路径然后是左侧路径。

实际上,在量子理论的数学体系中,因果关系上的模糊性是完全符合逻辑的。研究人员还认为,非因果系统可以进一步推动颇具潜力的量子计算的发展。中国香港大学量子理论学家Giulio Chiribella 说:“如果有不受因果规律限制的量子计算机,那么它有可能在解决某些问题时比传统量子计算机速度更快。”

不过,量子力学允许光子同时以两种方式被极化,从而使其出现对角极化。当被对角极化的光子进入上述装置时,描述它的量子波分裂成垂直极化和水平极化的两部分。而光子同时采用两个路径,然后量子波在装置出口处再次合并。当光子重复这一“旅程”时,会再次采用两个路径,尽管光子量子波的每个部分每次只走一条路。因此,讲清楚光子以何种顺序通过了路径是不可能的。

此外,由于因果是关于物体间如何通过时空产生相互作用的规律,这种新的视角或许能帮助人们解决当今物理学最大的挑战之一。Walther的合作者、维也纳量子光学与量子信息研究所理论物理学家Caslav Brukner说:“因果关系处于量子力学与广义相对论的交界处,因此有可能成为我们探索如何融合两大理论的切入点。”

棘手的部分在于证明试验中发生了什么。物理学家不可能插入揭示光子可能位于“迷宫”何处的探测器。由于量子的怪诞性,这种明确的测量会让光子同时采用两个路径的微妙条件“崩塌”并且毁掉试验。相反,物理学家必须寻找一些更加温和的方式,在光子上印一些其通过特定路径的痕迹。

因果性就一直是量子力学中的一个关键问题。20世纪30年代中期,爱因斯坦质疑了由尼尔斯:玻尔和维尔纳:海森堡提出的量子力学的随机性。玻尔与海森堡提出的哥本哈根诠释认为,量子测量的结果是随机的,并且只可能决定于测量的瞬间。

为此,研究人员利用除极化外每个光脉冲都拥有形状或空间分布的事实,通过把镜头和其他光学元件放置到每个路径上从而“摆弄”通过的光子,而且温和地改变光脉冲的形状。这些变化是试验中发生的真实“事件”,同时取决于物理学家沿着每条路径施加哪些小的系列变化,光子的极化能从一个对角线方向翻转成另一个。在这个过程中,量子波的两部分重新合并。这种微妙的连接是试验的关键。

但是在1935年,爱因斯坦和同事Boris Podolsky、Nathan Rosen(根据其姓氏首字母,合称EPR)提出了一个著名的思想实验,将玻尔对量子力学的解释推到了一个貌似不合理的位置。

在多次试验中,物理学家在两个路径中施加了不同组合的形状改变,就像在一堆设置中选择两个不同的按钮。如果每个光子最先明确选择了其中一条路径,按钮设置之间的关联以及光子最终的极化必须遵循特定限制。不过,如果两者最先采用了两条路径,这种关联将超越此类限制。这正是物理学家在《物理评论快报》一篇文章中观察到的东西。

EPR实验中有A、B两个粒子,它们处于相互依赖的状态,也就是“纠缠态”。即如果 A的自旋朝上,则B的自旋一定朝下,反过来如果 A的自旋朝下,则B的自旋一定朝上。

按照现在情况,试验者在两条路径上单独选择一些操作。不过,致力于该试验的法国奈尔研究所物理学家Cyril Branciard表示,原则上,试验表明量子力学使两个过程相互触发成为可能。“人们可能遇到这种情形,即事件A引发事件B,同时事件B引发事件A。”

这两种定向都是可能的。但研究人员只对其中一颗粒子进行测量,就确定两个粒子究竟处于何种自旋状态。根据哥本哈根诠释,测量不仅让人们获知粒子的状态,还会使得粒子“固定”在所测得的状态。

2015年,奥地利维也纳大学物理学家开展了类似试验。不过,开展了此前试验的该校理论学家Caslav Brukner表示,最新试验首次在试验中克服了技术上的限制,并且可能更容易在实际应用中放大规模。

这也意味着,与这颗粒子同处于纠缠态的另一颗粒子的状态也在瞬间固定。

《中国科学报》 (2018-08-28 第3版 国际)

但爱因斯坦不能接受这种跨越遥远距离而瞬间发生的相互作用,因为这意味着相互作用的传递速度超过光速,这有悖狭义相对论。爱因斯坦坚信,这一实验证明了哥本哈根诠释存在缺陷,他还认为在测量之前,A、B粒子必定已经有了明确的状态。

然而,对纠缠态粒子的测量证明粒子自旋之间的关联性,无法用粒子已有属性来解释,但同时这些关联又不违背狭义相对论,因为粒子的运动速度不可能超过光速。那这种关联是怎样产生的?这确实很难用直观的因果关系解释。

Brukner团队、Chiribella团队等许多物理学家已经开始初步尝试探索量子力学中模棱两可的因果关系。他们精心设计了相互关联的事件A与事件B,但没人能判断究竟是A先发生,导致了B,还是B先发生,导致了A。

本文由科技中心发布,转载请注明来源:【澳门金沙国际网站】“先有鸡”而且“先有蛋